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The problem

We consider the finite-sum minimization problem

find x, = arg min {f(x) — Tllilf@(a:)} , (1)

reR

where each f; is L-smooth function (potentially non-convex).
Our goal is to explain convergence of stochastic algorithms.
Assumption 1: For every ¢, f; is L-smooth, that is, for all
z,y € R? we have

|V fi(x) =V iy < Lijz — yl.

Motivation

e Huge dimension d = first-order methods are more efficient;
e Large dataset size n = stochastic updates are necessary:;

e Fast convergence to approximate solution is preferred =

large stepsizes are paramount.

Algorithms for Problem (1)

Algorithm 1 SGD Algorithm 2 |G

Input: z) = 20 € R%, v > 0
1: fort:O,l,... do
for:=0,....n—1do

Input: 2, € RY ~ > 0
1: fort:O,l,...do
2. Sample ¢ uniformly from 2

{1,...,n} 32 ottt =12l — yV fi(2)
3: X1 = Tt — ”}/Vf@(ilﬁt) 4. end for
4. end for 5. 2, = T
6: end for

Algorithm 3 RR Algorithm 4 SO

Input: z) = 20 € R%, v > 0
1: Sample 2
0y -y M1 0f {1,...,n}

Input: z) = 25 € R, ~v > (
1: fort:O,l,...do
2. Sample a

permutation
permutation

7T0,...,7Tn_10f{1,...,n} 2: fort:O,l,...do
3: fori:=0,....,.n—1do 3: for:=0,....,.n—1do
b afl =) —AVfa(a)) & afth = a) =V fo ()
5. end for 5. end for
6 Tpy = Tf 6 Ty = T
7. end for 7. end for
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SGD

Stochastic Gradient Descent (SGD) is
one of the most popular algorithms that sam-
ples functions uniformly at each iteration.
Pros: unbiased update, E;lz;1| = x —
vV f(xy); easy to analyze.

Cons: does not use the finite-sum structure;

access to arbitrary sample is expensive (cache
misses).
Rate of convergence:? O (%)
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Incremental Gradient (IG) is an alterna-
tive to SGD that performs cyclic data passes.
Pros: each function gets used exactly once per
epoch; fast sequential access to the memory:.
Cons: slow if the data are structured /sorted;
always slower than gradient descent.

Rate of convergence: O (?}—Z) (better than
SGD when T > n?)

RR/SO

Random Reshuffling (RR) and Shuffle-
Once (SO) improve upon IG by sampling a
permutation each epoch (RR) or just shuffling
the data once (SO).

Pros: faster rate than that of IG.
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Cons: hard to analyze as

YV f(z).
Rate of convergence (new!): O (75) (bet-
ter than SGD when T" > n)

?For all methods, the rate is provided in the strongly convex case
and in terms of full number of computed stochastic gradients 7'

Key contributions

1. Tight rates for RR and SO;
2. First result that allows for v = %;

3. New insight into convergence within each
epoch:
4. Improved estimate of shuffling variance.
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New complexities for RR /SO

Let 02 & % ? ||V fi(zy)|]* be the variance at

X
the optimum and k = L (convex f) or o0 =

sup, 50, [V fi(2) = VF()]|? (non-convex f).

New complexities:
., fn are u-strongly convex:

olfall fi,..
O(/ﬁlog% | %),

elfonly f = %Z;ﬂzl f; is p-strongly convex:

O(/ﬁnlog% | \/u@)’
o If fis convex: O (g | \gg)

o If f is non-convex (RR only): O (5
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New theoretical insights

Definition 1. For any i, we define the Bregman
divergence of f; as

Dy(x,y) € filz) — fily) — (Vfily), = — y).

fi is called p-strongly convex if Dy(x,y) > 5|z —
y||? for any x,y € R?

Definition 2. Given a permutation m, ..., T,—1
and stepsize v > 0, we let

- def (i,
Ly = Ly — 7 Zvaw](f*)
]:

Clearly, by optimality of z,, we have z!" = z,.

Lemma 1. |Key recursion| It holds

23+ — 22 = |l — a2+ A2V ) — V()
— 29Dy, (3, x;) + Dy, (4, 3.) — Dy, (2, 7).

Lemma 1 is used to obtain the following theorem.
Theorem 1. If f;,..

and v < %, then

||l —

., fn are p-strongly convex

2,7 < (1= yp)llzy — 2L + 29 05

e ™ max | EIDy, (i, 2.)
To compare this to convergence of SGD, we prove
the following upper and lower bounds.
Theorem 2. It holds

YU 5 vLn
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Experiments

We run experiments on #» regularized logistic

regression problem and set ¢y penalty to be

\/LN’ where [V is the dataset size.

— Average
—eo— Worst sampled shuffle
—*— Best sampled shuffle

0 25 50 75 100 125 150 0 1 2 3 4
Data passes Data passes

101 —— SGD
—o— |G 10_4

-5
10
—e— Worst sampled shuffle

—+— Best sampled shuffle

0 50 100 150 200 250 0 1 2 3 4

Data passes Data passes

— SGD
—— Average
—o— IG

3 >~ Shuffl ’u“ —e— Worst sampled shuffle
0 i »-‘i e —— Best sampled shuffle
\

f(x) — fx

107>

0 5 10 15 20 25 30
Data passes

Figure 1:Top: real-sim dataset (N = 72,3009;
d = 20,958), middle row: wda dataset (N = 49, 749;
d = 300), bottom: RCV1 dataset (N = 804,414;
d = 47,236). Left: convergence of ||z¢ — x|, right:

convergence of SO with different permutations.
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Figure 2:Left: histogram of values of 64, « evaluated
on 500,000 sampled permutation. Right: values of
04.m. for different values of . Both plots are com-

puted for wda dataset.



